1. Solve the equation $2 \sec ^{2} \theta=5 \tan \theta$, for $0 \leq \theta \leq \pi$.
2. Show that the equation $\operatorname{cosec} x+5 \cot x=3 \sin x$ may be rearranged as

$$
3 \cos ^{2} x+5 \cos x-2=0
$$

Hence solve the equation for $0^{\circ} \leqslant x \leqslant 360^{\circ}$, giving your answers to 1 decimal place.
3. In this question you must show detailed reasoning.

Solve the equation $\sec ^{2} \theta+2 \tan \theta=4$ for $0^{\circ} \leq \theta<360^{\circ}$.
4. In this question you must show detailed reasoning.
(a) Prove that $(\operatorname{cosec} \theta-\cot \theta)^{2}=\frac{1-\cos \theta}{1+\cos \theta}$.
(b) Hence solve the equation $(\operatorname{cosec} \theta-\cot \theta)^{2}=\frac{1}{3}$ for $0^{\circ}<\theta<360^{\circ}$.

Mark scheme

| | | | $=\frac{(1-\cos \theta)^{2}}{(1-\cos \theta)(1+\cos \theta)}=\frac{1-\cos \theta}{1+\cos \theta}$ | | $\cos ^{2} \theta$
 AG Factorising must
 be shown | Secant, Cosecant, Cotangsenet |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

